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Ultrasonic studies of condensed matter in the 1950s and beyond* 

Char l e s  E l b a u m  
Brown University, Department of Physics, Providence, RI 02912 (USA) 

1. Introduction 

Unlike the long history, spanning millenia, and the 
wide range of uses of sound propagation in the audible 
domain of frequencies, studies of "ultrasonic" (espe- 
cially in the megahertz region and beyond) elastic waves 
in condensed matter are a twentieth century phenom- 
enon; they have gained particular prominence in the 
last five decades. The reason for this is, of course, the 
lack of means in earlier times to excite, in a controlled 
fashion, mechanical vibrations in the high-frequency 
region. The advent of devices suitable for this purpose, 
such as, for example, piezoelectric transducers, made 
these studies possible. 

This brief account of the use of ultrasonic waves in 
studies of condensed matter concentrates largely on 
activities at Brown University in the 1950s and somewhat 
beyond, but research work in other institutions is also 
recorded. The choice of Brown University and of the 
period are, of course, arbitrary, yet it is hoped that a 
fair perspective of the history and growth in the field 
will emerge from the examples discussed. Needless to 
say, the coverage is incomplete, even with regard to 
the work done at Brown University; readers interested 
in more details, or a broader view of the field, are 
encouraged to consult the vast literature on ultrasonics, 
only a very small sample of which, further limited to 
the period covered by this account, is given in the 
references. 

The research activities at Brown University based 
on ultrasonics evolved from an earlier tradition in 
acoustics, that originated in the first half of the century 
under the guidance of Bruce Lindsay. Three lines of 
work followed, starting in the late 1940s; these are 
summarized below. 

In 1948, the late Rohn Truell organized the Metals 
Research Laboratory. Its original purpose was to develop 
and use ultrasonic methods in the study of solids in 
general, and metals in particular. Some of its early 
successes included the refinement of pulse-echo tech- 
niques and the development of instrumentation for use 
in ultrasonic investigations of solids and liquids, ex- 
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tensive studies of crystal defect behavior, the devel- 
opment of the Granato-Liicke theory of dislocation 
damping and calculations by Truell and coworkers on 
the elastic scattering of ultrasonic waves by defects in 
solids. 

Among the early faculty members whose membership 
in this laboratory was relatively brief, but who left a 
very strong legacy, was Kurt Liicke. In 1959, Charles 
Elbaum joined the laboratory and these activities were 
gradually extended to higher and higher frequency 
ultrasonic waves and to their interactions with other 
excitations in solids, including thermal phonons, elec- 
trons, etc. As a natural evolution of the above, the 
research eventually encompassed thermal and electrical 
transport studies. Alongside these developments, the 
emphasis extended from the study of metals to that 
of semiconductors and dielectrics. In subsequent years, 
liquid helium and solid helium assumed an increasingly 
prominent role in the laboratory's activities. In the 
same period, Akira Hikata was very actively involved 
in and contributed extensively to many aspects of the 
research discussed. 

Throughout, a very prominent role was played by 
Bruce B. Chick and, in the early years, by George 
Anderson, who were responsible for the development 
and construction of very sophisticated electronic in- 
strumentation that constituted a cornerstone of the 
laboratory's experimental research. This instrumenta- 
tion was periodically refined and updated, thus re- 
maining in the forefront of the field. 

In addition to those mentioned above, many other 
people were, of course, involved in these activities and 
contributed enormously to the overall research effort. 
These included numerous graduate students, post-doc- 
toral associates and visitors from various institutions 
in the USA and other countries. While it would be 
difficult to present a complete list, we must mention 
at least Andrew Granato, Norman Einspruch and Ro- 
land Dobbs, and ask forgiveness of all others whose 
work is acknowledged collectively as a group. 

Another related activity at Brown University, started 
in the late 1940s, was that of Robert T. Beyer and 
coworkers. This group was involved primarily in studies 

Elsevier Science S.A. 
SSDI 0925-8388(94)00123-T 



C. Elbaum / Ultrason& studies o f  condensed matter 21 

of liquids using megahertz frequency ultrasonics, and 
made numerous contributions to the field, until Beyer's 
retirement in the early 1980s. 

In the mid-1950s, Robert W. Morse initiated an 
extensive program of study at Brown University in the 
area of magnetoacoustic properties of metals. From 
this program emerged numerous determinatfons of the 
Fermi surface of various metals, as well as the first 
experimental verification of the ultrasonic attenuation 
dependence on temperature in the superconducting 
state, predicted by the theory of Bardeen, Cooper and 
Schrieffer (BCS). 

In the following, a few highlights among the activities 
mentioned above will be discussed. Given the nature 
and purpose of this summary, only a descriptive outline 
is offered, with no attempt at quantitative rigor or 
comprehensive coverage. More detailed treatments of 
these topics may be found in ref. 1. 

2. Attenuation and velocity determinations 

Measurements of attenuation and velocity changes 
of ultrasonic waves in the megahertz frequency domain 
are usually carried out using two approaches: the pulse- 
echo method and the continuous wave (CW) method. 
The former is more common, because it is applicable 
to a much wider range of experimental circumstances. 
While the latter approach provides higher resolution, 
it is very limited in the permissible amplitude, because 
of total energy dissipation and heating of the sample. 
For this reason, it is practically never used at low 
temperatures (liquid helium), and even at higher tem- 
peratures it is not suitable for studying amplitude- 
dependent (non-linear) phenomena. Nonetheless, the 
CW method played an important role in some appli- 
cations, such as nuclear acoustic resonance, in which 
its high resolution was essential to the success of the 
studies. 

In the pulse-echo method, a short (relative to the 
transit time of the wave pulse through the sample) 
duration pulse is introduced into a solid or liquid, 
propagating in a direction normal to two fiat and parallel 
confining surfaces. The decreasing amplitude of the 
resulting successive reflections of the pulse from the 
two confining planes provides a measure of the atten- 
uation of the waves in terms of either the distance or 
time of travel. A succession of pulses, separated in 
time by a period longer than the time required by the 
preceding pulse to decay to undetectable amplitude, 
is generated by an appropriate transducer (for example, 
a piezoelectric device) coupled mechanically to the 
sample under study. The transducer is excited by an 
electrical signal from a pulsed transmitter whose carrier 
frequency corresponds to that of the fundamental fie- 
quency of the transducer or one of its odd harmonics. 

A single transducer is often used as both the source 
of the input pulse and the receiver of the successive 
echoes that result from the single pulse. A second 
transducer on the opposite confining face of the sample 
is sometimes used as a separate receiver, depending 
on the circumstances and objectives of the experiment 
[2, 3]. The same type of arrangement is generally used 
to measure the velocity of the waves propagating in 
the medium under study, by determining the transit 
time of the pulse traveling between the confining planes 
of the sample, whose separation is known. For both 
attenuation and especially velocity determinations, var- 
ious refinements and signal processing methods are 
used to enhance the resolution and precision of the 
measurements. It should also be noted that, in many 
circumstances, the quantities of primary interest are 
the changes in attenuation and velocity as a function 
of another parameter, such as, for example, temperature, 
magnetic field, mechanical stress, etc. [4-7]. Further- 
more, absolute values of attenuation and velocity are 
more difficult to obtain with an accuracy comparable 
with that for the changes. This is due largely to the 
energy losses from the ultrasonic wave not related to 
the properties of the medium under study. Such losses 
come, for example, from various geometrical features 
(such as beam divergence) and from the conversion of 
some of the mechanical energy back into electrical 
energy in the transducer as part of the signal detection 
process [8, 9]. Finally, the importance of concurrent 
measurements of attenuation and velocity changes 
(which are proportional to the imaginary and real parts 
of the complex propagation constant respectively) is 
emphasized. Indeed, such concurrent measurements 
provide much more complete information on the physical 
properties studied than either one separately. (This is 
so, notwithstanding the fact that, in principle, either 
one can be obtained from the other via a Kra- 
mers-Kroning transformation, provided that they are 
known over a wide frequency range.) 

3. Scattering 

Elastic scattering of stress waves in solids, at any 
frequency, is brought about by differences in elastic 
properties from point to point. However, the strength 
of scattering depends on the relation between the 
wavelength A and the size of the scatterer a. This 
dependence is usually expressed in terms of the product 
ka where k = 2~ /h  is the wavenumber, as will be further 
mentioned below. 

The attenuation of plane waves due to elastic scat- 
tering is usually expressed in terms of the scattering 
cross-section 7, defined as the ratio of the total energy 
scattered per unit time to the energy per unit area per 
unit time in the incident wave front normal to the 
direction of propagation. If the scattering cross-section 
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for a single scatterer is known, and if the individual 
scatterers are identical and may be regarded as in- 
dependent of each other, then the amplitude attenuation 
(a) can be expressed through the loss in intensity d/ 
at a point x 

d /=  - no yldx = - 2a/dx (1) 

and 
1 a =  ~-noy (2) 

where no is the density of scatterers. When the scatterers 
are not independent, multiple scattering occurs and 
obtaining ot is much more complex, even with regard 
to the statement of the problem. 

In the context of the ka product, megahertz and 
higher frequency wave scattering become particularly 
important for small scatterers. Indeed, two different 
scattering regimes occur for ka << 1 and for ka >> 1. In 
the Rayleigh limit, ka << 1, i.e. for small scatterers, the 
scattering cross-section, and thus the attenuation of 
the incident wave, is proportional to v 4, where v is the 
frequency [10, 11]. 

4. Dislocations 

familiar forms of the responses of a damped harmonic 
oscillator. These solutions are expressed in terms of 
the dislocation loop lengths (or their distribution), the 
damping parameter, the dislocation density and char- 
acteristics of the solid. While not all these parameters 
are directly measurable, various ratios and combinations 
are accessible to experiment and others can be in- 
dependently determined through the application of 
external fields, particularly static or dynamic bias stresses 
[20-27]. 

The G-L theory has been remarkably successful in 
accounting for a very wide range of dislocation-related 
phenomena. It has withstood the test of time essentially 
in its original form, with only a few refinements and 
elaborations, mostly in the area of thermal effects, 
which are not addressed explicitly in the initial treat- 
ment. 

One of the elaborations involved the introduction of 
a discretized form of the dislocation displacements 
consisting of kink motion, rather than the continuum- 
like "stretching" of an elastic string [26]. This approach 
applies to dislocation motion at low temperatures, and 
has been used to account for experimental observations 
of ultrasonic attenuation and velocity changes in that 
regime. 

Attenuation of stress waves and wave velocity changes 
in solids due to dislocations were first proposed by 
Read [12]. The wide variety of forms in which dislocation 
damping occurs was subsequently rationalized in terms 
of the vibrating string model. This model provides a 
very elegant means of interpreting the vast majority of 
experimental observations, especially when augmented 
by some discretizing features. The basic model evolved 
from early calculations of Mott [13] and of Koehler 
[14], with subsequent contributions by Friedel [15], 
Weertman [16] and other. Finally, in 1956 (at Brown 
University), Granato and LOcke (G-L) connected the 
various elements previously discussed by others into a 
coherent, qualitative theory of dislocation motion, based 
on the vibrating string model [17]. This theory included 
both amplitude-independent and amplitude-dependent 
losses, cast in a format amenable to direct comparisons 
with experimental results. Various elaborations and 
refinements of this theory have subsequently appeared 
from Granato, Lticke and coworkers, as well as many 
other researchers. Concurrently with these theoretical 
contributions, numerous experimental studies were con- 
ducted and discussed in terms of the G-L theory [18, 
19]. 

The essential features of the G-L theory are obtained 
by starting with the equation of motion of a damped, 
vibrating string pinned at both ends. Clever solutions 
are then obtained for the attenuation (or damping) 
and velocity change (or elastic modulus defect) in 

5. Harmonic generation due to dislocations 

Anharmonicity of a medium may be viewed as a 
departure from linear dependence between applied 
stress and resulting strain, i.e. a departure from Hooke's 
law. In all condensed matter, this non-linearity originates 
from the anharmonic terms in the interatomie potential. 
In addition, in solids containing dislocations capable 
of glide displacements in response to applied stresses, 
non-linear stress-strain behavior can also occur due to 
these displacements. 

In the preceding section, the work described assumed 
that the stress-strain relation is linear, except in the 
amplitude-dependent regime involving dislocation un- 
pinning from weak pinning points. However, even in 
the absence of unpinning the stress-strain or 
force-displacement relation is inherently non-linear. 
This feature is quantitatively negligible at low ampli- 
tudes, but becomes significant as the amplitude in- 
creases. One important consequence of this behavior 
is that a sinusoidal driving force associated with a 
propagating ultrasonic wave at a frequency to will pro- 
duce displacements at to, as well as its higher harmonics. 
Depending on the shape of the potential in which the 
dislocation vibrates, even or odd harmonics (or both) 
will be generated. 

Detailed studies of harmonic generation as a function 
of various parameters were carried out in the megahertz 
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region [28-32]. These studies contributed both to the 
general scope of the non-linear response of systems 
containing dislocations, as well as to clarifying aspects 
of the intrinsic properties of dislocations. It may be 
worth noting that, although the harmonic generation 
processes just described are a general phenomenon 
applicable at all frequencies, their experimental ob- 
servations are, in practice, restricted to a narrow range 
of frequencies in the low megahertz region. This is 
because the amplitude of the harmonics relative to that 
of the fundamental wave increases with increasing 
frequency of the fundamental, but so also does the 
attenuation. This may be illustrated by the following 
expressions for the amplitude (A2) of the second har- 
monic and the amplitude (A3) of the third harmonic 
at a distance x from the source (at x=0),  where a 
fundamental wave of amplitude Alo and frequency ~o 
is introduced 

w 2 exp( - 2a ix) - exp( - a2x) 
A 2 = --~ P A l o  z (3) 

o~ 2 - -  a 1 

oJ z exp( - 3axX) - exp( - a 3 x  ) 
A3 = -~ QA~o 3 (4) 

a 3 - -  3o~ 1 

Here P and Q are combinations of material properties 
and factors pertaining to the characteristics of the 
dislocation network and al, a2 and a3 are the attenuation 
coefficients of the fundamental wave of frequency ~o, 
the second harmonic (2oJ) and the third harmonic (3o~) 
respectively. In view of the fact that, over a wide range 
of conditions, a~, a2 and a3 are proportional to the 
square of oJ, 2o~ and 3oJ respectively, it is readily seen 
from the above equations that, as x increases from x = 0, 
A2 and A3 first increase, go through a maximum and 
then decay rapidly due to the exponential factors. Thus 
there exists a small frequency interval over which har- 
monics are fairly readily accessible to observation for 
sample lengths of common laboratory practice. 

6. Interactions with conduction electrons in metals 

Attenuation of ultrasonic waves through interactions 
with conduction electrons becomes appreciable at tem- 
peratures below about 10 K. At higher temperatures, 
other mechanisms are usually dominant. 

Interactions between electrons and thermal phonons 
are, of course, an essential feature of electron transport. 
The differences between the two cases arise from the 
different frequency ranges involved, and the basically 
"monochromatic" character of ultrasonic waves, in con- 
trast with the wide (Planck) distribution of thermal 
phonons. 

After the initial experimental observations of these 
interactions by B6mmel [33] and MacKinnon [34], sev- 

eral workers calculated the resulting attenuation using 
semi-classical arguments and the free-electron ap- 
proximation [25-37]. 

The results obtained by these workers were essentially 
the same. These results are illustrated in the following 
expression for the attenuation (a) of longitudinal waves, 
as derived by Morse [35] for the condition ql~ < 1, where 
q is the wavenumber and l~ is the electron mean free 
path. 

2 Nmvv 
a = q2lc ( 5 )  

15 poVt 

Here N is the electron number density, m is the electron 
mass, vv is the Fermi velocity, po is the mass density 
of the material and v~ is the longitudinal wave velocity. 
As can be seen, in this regime, ot varies linearly with 
I e and thus has the same temperature dependence as 
le, the other parameters being essentially temperature 
independent in the region T<10 K. 

Pippard [38], again using the free-electron model 
and semi-classical arguments, extended this approach 
to arbitrary values of qlo. He further clarified the problem 
by pointing out that the displacements of the lattice 
ions by a stress wave induce an internal electrical field. 
This field is electrostatic for longitudinal waves and 
electromagnetic for transverse waves. 

Pippard's argument for calculating the ultrasonic 
attenuation may be summarized as follows. A lattice 
wave traveling through a metal gives rise to variations 
of electric forces on the electrons. The positively charged 
lattice ions will undergo periodic displacements with 
velocity v, but the electron density may not remain 
constant. For example, in the compressed region of a 
longitudinal wave, the increased positive charge density 
will attract electrons, the opposite happening for the 
expanded region. If the electron and ion densities do 
not follow each other exactly, space charges develop, 
resulting in a periodic electric field in the direction of 
wave propagation. In the case of the transverse waves 
there are no density changes, and hence no electric 
fields resulting from space charges. If, however, the 
lattice and electronic currents do not cancel each other, 
periodic magnetic fields are generated; these give rise, 
in turn, to electric fields by induction. There will also 
be relaxation effects due to collisions of electrons with 
thermal phonons, defects, etc., which will tend to restore 
equilibrium with the surroundings. Pippard, in effect, 
calculated the net distortion of the Fermi surface due 
to the combined influence of the internal electric fields 
and collisions. 

In the case qlc> 1, Pippard's calculations give an 
attenuation coefficient (a) that varies linearly with 
frequency and is independent of qle 
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~rNmvv 
a(ql~> 1)= 12poV----- 5 to (6) 

7. Influence of a magnetic field; the magnetoacoustic 
effect 

Pippard's treatment yields for the overall dependence 
of the attenuation of longitudinal waves on ql~ 

a 6 [  qlcA 1 ]  
a(ql¢>l) ~" 3(1-A)  ~o (7) 

where A = (arctan ql~)/(ql~). 
A more elaborate and more general treatment of 

the attenuation and dispersion of ultrasonic waves was 
given by Steinberg [39], using Boltzmann's transport 
equation and the free-electron model of a metal. He 
also assumed the knowledge of an effective relaxation 
time for restoring the thermal equilibrium distribution 
of electrons. 

The expressions for attenuation obtained by Steinberg 
[39] are similar in form to those discussed above and 
have the same dependence on frequency and on the 
electron mean free path. However, there are differences 
in the numerical coefficients. The experimental results 
generally agree well with the theoretical predictions in 
terms of their temperature dependence (through the 
electron mean free path) and frequency dependence 
(for the different regimes, ql~ < 1 and ql~ > 1). Numerical 
values of the electronic contribution to the attenuation 
are, however, difficult to obtain with high accuracy. 
Two difficulties contribute to this uncertainty. The first 
is that the theoretical treatments discussed are based 
on the free-electron approximation, while most exper- 
iments are carried out on metals that depart in varying 
degrees from this approximation. The second is due 
to the attenuation arising from causes other than in- 
teractions with conduction electrons. At very low tem- 
peratures, this attenuation is usually temperature in- 
dependent, but not independent of frequency; it may 
constitute a significant fraction of the total attenu'ation 
measured, particularly at high frequencies. It may be 
difficult, therefore, to separate the various effects and 
to obtain accurate values of the numerical coefficients 
for electron attenuation. 

Finally, it should be pointed out that many quantum 
mechanical calculations of the interaction between ul- 
trasonic waves and conduction electrons in metals have 
been carried out. A simple approximate treatment of 
the subject by Morse [40] provides an overview of the 
physical issues and of the results obtained. It is note- 
worthy that when applied to free electrons, these results 
are identical with those derived by semi-classical meth- 
ods (eqn. (6)). 

The dependence of ultrasonic attenuation due to 
conduction electrons on a magnetic field can be de- 
scribed in terms of the change in the electron mean 
free path. Qualitatively, it may be assumed that a 
magnetic field, by causing the electrons to follow curved 
paths, reduces the distance between collisions in the 
direction of the ultrasonic wave propagation. This results 
in a reduction in attenuation, which depends on the 
distance in the direction of propagation traveled by an 
electron between collisions (relative to the wavelength). 
The following experimental observations support this 
viewpoint. When qlo> 1, the attenuation (a) varies 
linearly with frequency (to) for zero magnetic field. The 
application of an increasing magnetic field gradually 
increases the frequency dependence of a, and eventually 
a becomes proportional to to2 for sufficiently high mag- 
netic fields. The latter occurs when the field is high 
enough for the electron orbit diameter to become smaller 
than the ultrasonic wavelength. Since in the absence 
of a magnetic field the attenuation varies as to2 for 
qle < 1, the effect of applying a strong magnetic field 
is interpreted in terms of a shortening of the mean 
free path of the electrons. 

A more quantitative treatment of this effect, based 
on the free-electron approximation, was given by Stein- 
berg [41]. He showed that, for transverse waves, with 
the magnetic field perpendicular to both the polarization 
and propagation directions, the field dependence of 
the attenuation for qle < 1 should be of the form 

a(/ - / )  = 1 (8)  
a(O) (1 + 2toc ~.)2 

where toc= (etO/(mc) is the cyclotron frequency. For 
a magnetic field parallel to the direction of polarization 
and perpendicular to the propagation direction, this 
relation becomes 

a(H) = 1 (9) 
a(O) 1 + (to~'r): 
These equations predict that, for large fields, the at- 
tenuation should vary as H -2, which agrees quite well 
with experimental results [40] when qle < 1. Moreover, 
although eqn. (8) was derived for transverse waves, it 
was found experimentally to apply also for longitudinal 
waves when the field is perpendicular to the wave 
propagation direction. 

8. Applications to Fermi surface studies 

Far more interesting than the case of qle < 1, from 
the point of view of the electron theory of metals, is 
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the ultrasonic attenuation in the range qle> 1, where 
an oscillatory variation of a with field strength is ob- 
served. These oscillations were interpreted as a res- 
onance-like effect arising when the electron mean free 
path is sufficiently long so that the electron orbit size 
matches the ultrasonic wavelength. Pippard [42] then 
proposed that this phenomenon could be used to in- 
vestigate the shape of the Fermi surface. When the 
electron mean free path is greater than the ultrasonic 
wavelength, the electrons pass through many phases 
of the wave without being scattered. In view of the 
large difference between the Fermi velocity and the 
ultrasonic velocity, the ultrasonic waves appear sta- 
tionary to the electrons. A magnetic field value can 
thus be found such that the orbit diameter of the 
electron matches with a multiple of the ultrasonic 
wavelength. As the magnetic field changes, the orbit 
diameter will change until it again matches a multiple 
of wavelength, and periodic oscillations as a function 
of field strength H, with a period inversely proportional 
to H, will result. Furthermore, the orbit diameter is 
proportional to the electron momentum in a direction 
perpendicular both to the magnetic field and to the 
ultrasonic wave. Thus the periodicity of the attenuation 
for various field directions with respect to the axes of 
a single crystal can be used to determine the shape 
of the Fermi surface. The earliest experiments using 
these ideas were carried out on metal single crystals 
by Morse et al. [43-45] and by Reneker [46]. 

Shortly after Pippard's original proposal, three fairly 
distinct types of oscillations were recognized. These 
are geometric resonances, quantum oscillations (also 
known as ultrasonic de Haas-van Alphen oscillations) 
and acoustic cyclotron resonances. All three are periodic 
in the reciprocal of the applied magnetic field, with 
periods that are related to the extremal linear dimen- 
sions, extremal cross-sectional areas and curvatures of 
the Fermi surface respectively. 

experimental tests of one of its predictions, namely the 
temperature dependence of the ultrasonic attenuation 
below the transition temperature. This prediction 

as 2 
- -  = (10) 
4o exp(Eg(73/kB73+ 1 

where as and an are the ultrasonic attenuations in the 
superconducting and normal states respectively (at the 
same temperature), Eg is the temperature-dependent 
superconducting energy gap and kB is Boltzmann's 
constant, was well verified experimentally [40]. 

In the limit of very low temperatures (i.e. where Eg 
becomes essentially constant and Eg >> kB 73, eqn. (10) 
reduces to an exponential dependence of Ors/Or n o n  ( -- 1/ 
73. Measurements of as~an thus provide a means to 
determine Eg, and when carried out on single crystals 
as a function of orientation, the anisotropy of Eg can 
also be found. Such studies were carried out by Morse 
et al. [40, 48, 49], providing some of the earliest values 
of Eg and especially of its anisotropy. 

10. Concluding  remarks  

This brief and, admittedly, very incomplete account 
of high-frequency ultrasonic studies in the 1950s pro- 
vides, it is hoped, a glimpse of some of the important 
and exciting activities of that period. It is interesting 
to note that many of the approaches, both experimental 
and theoretical, developed then continue to be widely 
used in basic research as well as in numerous applications 
that have evolved in the intervening years. The sig- 
nificance and vitality of high-frequency ultrasonics are 
well illustrated by the large number of scientific and 
technical publications that continue to appear on this 
subject. 
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